Fourth Grade My Summer Math Packet Name

I can use arrays and groups of objects to represent multiplication sentences

Operations and Algebraic Thinking

<u>Directions</u>: Multiplication can be shown as groups of objects. Look at the groups below and write the multiplication sentence for the arrays given.

3.

____ × ___ = ___

___ X ___ = ___

____ X ___ = ___

<u>Directions</u>: Draw an array showing the groups and objects for the problems below.

4. Your family gathered at the park for a family reunion.

Three of your aunts came, and each aunt had 4 children. How many children did your aunts bring?

5. At the beach you found 4 sea

. x ____ = ___

. x ___ = __

I can use arrays and groups of objects to show division as equal groups of a total.

Operations and Algebraic Thinking

<u>Directions</u>: Division can be shown as groups of objects. Look at the groups below and write the division sentence for the arrays given.

* ****

3. Write and solve a word problem where there are a total of 54 objects that are separated into 9 equal groups.

I can multiply and divide within 100 without using manipulatives or arrays.

Operations and Algebraic Thinking

<u>Directions</u>: Solve the multiplication sentences below.

I can multiply and divide within 100 without using manipulatives or arrays.

•		

I can multiply and divide within 100 without using manipulatives or arrays.

I can multiply and divide within 100 without using manipulatives or arrays.

•		

I can find the unknown whole number in a multiplication or division sentence.

I can use place value to round whole numbers to the nearest 10 or 100.

Numbers and Operations in Base Ten

Directions: Use place value to round the numbers below to the nearest 10 or 100. Remember if the digit that follows the 10 or 100 is 5 or higher you will round up. If the digit is 4 or lower, the digit does not change.

Round the following numbers to the nearest 10.

Round the following numbers to the nearest 100.

- 1. 78 _____
- 8. 12
- 1. 436 _____ 8. 743 ____

- 2. 28
- 9. 93 _____
- 2. 826 _____ 9.
 - 987

- 3. 61
- 10. 85
- 3. 681 _____
- 10. 105

- 4. 37
- 11. 56
- 4. 214 _____
- 11. 313

- 5. 45
- 12. 9
- 5. 346 _____
- 12. 444

- 6. 82
- 13. 74 _____
- 6. 890 _____ 13. 550 ____

- 7. 19
- 14. 88
- 7. 99 ____
- 14. 313

I can fluently add and subtract within 1,000.

Numbers and Operations in Base Ten

Directions: Add to find the sum.

I can fluently add and subtract within 1,000.

Numbers and Operations in Base Ten

Directions: Subtract to find the difference.

I multiply one-digit whole numbers by multiples of ten.

Numbers and Operations in Base Ten

<u>Directions</u>: Multiply the following one-digit numbers by the multiples of 10 below.

Example: 60

<u>x 9</u> 540 I am looking at 60 times 9. I can use mental math to solve this problem. I know that 6 times 9 is 54, so 60 times 9 should must 540 since all I have to do is add a zero to the end.

		,	

<u>Objective</u>

I can understand that a fraction is shown as equal parts of a whole.

Numbers and Operations -**Fractions**

Directions: Partition, or divide, each whole into equal sized parts.

1. 2 parts

2. 3 parts

3. 4 parts

Directions: What fraction of the figures below are shaded?

4.

5.

6.

7. Use the shape to show four-fifths 8. Use the shape to show two-thirds

I can compare fractions, with denominators of 2,3,4,6 or 8 using visual models.

Numbers and Operations – Fractions

<u>Directions</u>: Compare the fractions using < > or =.

1. $\frac{1}{3}$ $\frac{5}{6}$

- 2. \[\frac{5}{8} \] \[\frac{3}{4} \]
- 3. $\frac{1}{2}$ $\frac{2}{6}$

4. $\frac{2}{2} \square \frac{8}{8}$

4. <u>2</u> <u>2</u> 3

<u>Directions</u>: Use the fraction circles below to make as many fractions equivalent, or equal, to one-half. Can all of the circles be made equal to 1/2?

I can compare fractions, with denominators of 2,3,4,6 or 8 using visual models.

Numbers and Operations – Fractions

<u>Directions</u>: Use the fraction circles below to make as many fractions equivalent, or equal, to one-half.

1. How many fourths are equal to one-half?

3. How many eighths are equal to one-half?

4. How many sixths are equal to one-third?

5. How many sixths are equal to two-thirds?

6. Complete the pattern for fractions equivalent to one-half.

1 2 3 8 10 12

I can recognize simple equivalent fractions with denominators of 2,3,4,6 or 8 using visual models.

Numbers and Operations – Fractions

<u>Directions</u>: Use the equivalent fractions from the previous page to assist, or help, you with the mystery picture below.

									
34	<u>5</u>	<u>4</u> <u>13</u>	<u>6</u> 7	<u>2</u>	3	4/6	14	<u>2</u> 12	<u> </u>
<u>2</u> 7	<u>2</u> 8	2 5 2 4	<u>3</u> 7	<u>3</u> 9	<u>4</u> 12	2/3	4/6	<u>2</u> 9	2
<u>3</u> 5	10	<u>2</u> 4	<u>5</u> 10	<u>4</u> 8		2 3 5 0	<u>4</u> 8	<u>3</u> 8	18
<u> </u> 5 <u>3</u> 6	6 12	<u>4</u> 8 <u>5</u> 0	<u>3</u>	<u>6</u> 12	3 6 2 4		24	3 6	2 10
3 6	<u>2</u> 4	<u>5</u> 10	<u> </u> <u>2</u> <u> </u> <u>5</u> <u> </u> <u>10</u>	<u>4</u> 8	<u>6</u> 12	6 12 3 6 7 14	<u>8</u> 16	4 8	2 10 5 10 9 18
4 8 6 12	<u> </u> 2 <u>3</u> 6	<u>3</u> 6	<u>5</u> 10	<u>2</u> 4	6 2 5 0	7 14	<u>6</u> 12	<u>4</u> 8 3 6	9 18
<u>6</u> 12	· · · · · · · · · · · · · · · · · · ·	<u>6</u> 12	1/2	<u>6</u> 12	3 6	<u>4</u> 8	<u>5</u> 10	<u>9</u> 18	
<u>2</u> 4	6 12 5 10	<u>2</u> 4	<u>4</u> 8	<u> </u>	5 10 9 18	<u>10</u> 20	<u>8</u> 16	2 4	6 12 8 16
<u>6</u> 12	<u>5</u> 10		1/2	1 2 3 6 7 14	<u>9</u> 18	<u>3</u>	<u>6</u> 12	<u>10</u> 20	<u>4</u> 8
6 2 3 6 -6	1/2	<u>4</u> 8	<u>6</u> 12		<u>4</u> 8	<u>5</u> 10		<u>8</u> 16	<u>2</u> 4
<u> </u>	2 4	<u>5</u> 10	<u>3</u> 6	<u>6</u> 12	<u>2</u> 4	<u>6</u> 12	<u>1</u> 2 <u>4</u> 8	<u>5</u>	<u> </u>

Color fractions equal to:

$$\frac{1}{2}$$
 Red $\frac{1}{3}$ Brown $\frac{2}{3}$ Green